Poster 180 Long-term Efficacy and Safety of Tenofovir Disoproxil Fumarate (TDF) in Children with Chronic Hepatitis B (CHB): Final Results from a Placebo-Controlled Trial

Mei-Hwei Chang¹, Jorge Bezerra², Byung-Ho Choe³, Daniela Pacurar⁴, Sandeep Nijhawan⁵, Jae Hong Park⁶, Rajiv Mehta⁷, Yon-Ho Choe⁸, John Flaherty⁹, Anh-Hoa Nguyen⁹, Yang Liu⁹, Alexandrina Constantinescu¹⁰, Philip Rosenthal¹¹, KyungMo Kim¹², Daniel H. Leung¹³, <u>Jacques Yu¹⁴</u>

¹College of Medicine, National Taiwan University, Taipei, Taiwan; ²Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA; ³Kyungpook National University, School of Medicine, Daegu, Korea; ⁴Grigore Alexandrescu Emergency Clinical Hospital for Children, Institute of Medicine and Pharmacy Bucharest, Bucharest, Romania; ⁵Sawai Man Singh Hospital, SMS Medical College, Jaipur, India; ⁶Pusan National University Children's Hospital, Busan, Korea; ⁷Surat Institute of Medical Sciences (SIDS), Surat, Gujarat, India; ⁸Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ⁹Gilead Sciences, Inc., Foster City, CA, USA; ¹⁰Fundeni Clinical Institute, Bucharest, Romania; ¹¹University of California, San Francisco, CA, USA; ¹²Asan Medical Center Children's Hospital, Ulsan College of Medicine, Seoul, Korea; ¹³Texas Children's Hospital, Baylor College of Medicine, TX, USA; ¹⁴Gilead Sciences, Hong Kong, China

Background and Aim

TDF Study 0144

- Tenofovir disoproxil fumarate (TDF) is a potent chronic hepatitis B (CHB) treatment¹⁻³
- High viral suppression rates, favorable safety/
- tolerability, and no resistance documented through 8 years in adults³

TDF Nucleotide

transcriptase

reverse

inhibitor

- Fibrosis regression and cirrhosis reversal occur in a majority of treated patients²
- Potential for bone and/or renal complications in a patient subset³
- In children, TDF was superior to placebo at Week 48 in the proportion with HBV DNA <69 IU/mL, and was safe and well tolerated; however, bone mineral density increases were smaller than with placebo⁷

Results, cont'd

Disposition

Patients, n (%)	TDF n=60	Placebo→TDF n=29
Completed double-blind treatment	56 (93)	26 (90)
D/C double-blind study drug early	4 (7)	3 (10)
Adverse event		2 (7)
Noncompliance	1 (2)	
Withdrew consent/assent	3 (5)	1 (3)
Entered open-label TDF phase	56 (93)	25 (86)
Completed open-label study drug	55 (92)	22 (76)
D/C open-label study drug early	1 (2)	3 (10)
Investigator decision	1 (2)	1 (3)
Withdrew consent/assent	_	2 (7)
/C. discontinued.		

Resistance Analysis Through Week 192

 The number of patients qualifying for sequence analysis declined over time

333 Lakeside Drive Foster City, CA 94404 Tel: (800) 445-3235 Email: Jacques Yu jacques.yu10@gilead.com

Study Aim

n=29

 To evaluate the long-term efficacy and safety of TDF compared with placebo followed by TDF treatment in children 2 to <12 years of age with CHB

Methods

Study Design Primary Endpoint Week 0 48 96 n=60 TDF 8 mg/kg QD*

*Up to maximum of 300 mg QD; TDF tablets (150, 200, 250, or 300 mg) or powder (40 mg/g) formulation. [†]AASLD criteria: normal ALT \leq 30 U/L for males and females 0–12 years. ALT, alanine aminotransferase; CL_{cr}, estimated glomerular filtration rate using Schwartz formula; HBeAg, hepatitis B e antigen

TDF 8 mg/kg QD*

Secondary Endpoint

192

- Double-blind, placebo-controlled, Phase 3 study
- Key inclusion criteria
- Aged 2–<12 years at enrollment

Placebo QD

- HBeAg-positive or HBeAg-negative CHB at screening
- HBV DNA ≥4.2 log₁₀ IU/mL (≥10⁵ copies/mL); ALT ≥1.5 x ULN[†]; CL_{Cr} ≥80 mL/min/1.73m²
- 2:1 randomization

HBV DNA Responses Over 192 Weeks

- High rates of virologic suppression were achieved and maintained in the TDF group
- Lower rate of viral suppression in the Placebo→TDF group is due mostly to missing data

ALT Normalization

- No accumulation of conserved site changes was detected
- Through 192 weeks of treatment, only 2 patient in both groups qualified for phenotypic analysis
- ⁷ No patient experienced viral breakthrough or resistance to TDF during open-label phase through Week 192

Safety (Open-label Phase)

	Patients, n (%)	TDF n=56	Placebo→TDF n=25	
Adverse Events	Any AE	35 (62.5)	15 (60)	
	Grade 3–4 AE*	3 (5)	3 (12)	
	Serious AE ⁺	8 (14)	3 (12)	
	D/C due to AE	0	0	
	Death	0	0	
Laboratory Abnormalities, ≥5%	Grade 3–4	6 (11)	6 (24)	
	Amylase	0	2 (8)	
	Increased prothrombin time	1/42 (2)‡	1/20 (5)‡	

Results from Open-label Safety Analysis Set (excludes patients who discontinued double-blind study treatment).*No Grade 3 or 4 AEs in either group were related to study drug treatment; [†]No SAEs in either group were related to study drug treatment. [‡]Each patient experienced a single, isolated event that was not reported as an AE by the investigator.

Mean % Changes in BMD Over 192 Weeks

- Stratified by age (2–<6 and 6–<12 years) and geographic location (N America/Europe and Asia)
- Open-label extension phase through Week 192 wherein all patients were eligible to receive TDF

Study Endpoints for Long-term Analysis

Efficacy

- Antiviral efficacy endpoint: HBV DNA <69 IU/mL (<400 copies/mL) at Week 192
- COBAS[®] AmpliPrep/COBAS[®] TaqMan[®] HBV Test, v2.0 (LLOQ=20 IU/mL)
- Other secondary endpoints
- HBV DNA <29 IU/mL at Week 192
- ALT normalization (central laboratory and AASLD laboratory criteria)*
- Serology (HBeAg and HBsAg loss/seroconversion)
- Composite virologic, biochemical, and serological endpoints
- Resistance: Population sequencing of pol/RT for virologic breakthrough or discontinuation with viremia

Safety

- Overall: AEs and laboratory abnormalities (Open-label Safety Analysis Set)
- Bone: change in spine and whole body (minus head) BMD; bone turnover markers
- Renal: change in sCr, sPO₄, and CL_{Cr}, and markers of tubular function

*Central laboratory criteria: ≤34 U/L for females 1–15 years or males 1–9 years; ≤43 U/L for males 10–15 years. 2016 AASLD criteria: normal ALT ≤30 U/L for males and females 0–12 years (Terrault NA et al. Hepatology 2016;63:261-83). AE, adverse event; BMD, bone mineral density, measured by dual energy x-ray absorptiometry; HBsAg, hepatitis B surface antigen; LLOQ, lower limit of quantitation; RT, reverse

Results are missing = failure from double-blind and open-label phase. Central lab upper limit of normal (ULN): \leq 34 U/L for females 2–15 y or males 1–9 y and \leq 43 U/L for males 10–15 y; AASLD criteria ULN: \leq 30 U/L for males and females 0 to 12 y (Terrault NA et al. Hepatology 2016;63:261-83).

- High rates of ALT normalization were achieved and maintained in the TDF group by both methods
- Lower rates of ALT normalization at Week 192 in the Placebo→TDF group largely due to missing data

Serology at Week 192

	Patients, n/n (%)	TDF n=60	Placebo→TDF n=29			
	Loss	30/56 (54)	10/29 (34)			
HBeAg [*] Seroconversion		19/56 (34)	10/29 (34)			
	Loss	6/60 (10)	0/29 (0)			
HBSAG	Seroconversion	0/60 (0)	0/29 (0)			

Results are missing = failure from double-blind and open-label phase (Serologically Evaluable Full Analysis Set). *Patients who were HBeAg-positive at baseline.

Other Efficacy Endpoints at Week 192

Patients, n/n (%)	TDF n=60	Placebo→TDF n=29			
Composite of 2 endpoints: 1) HBV DNA <69 IU/mL 2) ALT normalization (central lab)	44/58 (76)	15/27 (56)			
Composite of 3 endpoints: 1) HBV DNA <69 IU/mL 2) ALT normalization (central lab) 3) HBeAg loss	24/54 (44)	9/27 (33)			
aulta are missing - failure analysis from double blind and anon label phase (Full Analysis Catwith					

Results are missing = failure analysis from double-blind and open-label phase (Full Analysis Set with ALT >ULN at baseline [2 endpoints] and ALT >ULN and HBeAg-positive at baseline [3 endpoints]).

Similar results were seen for 2 and 3 composite endpoints

Smaller mean % increases in BMD seen in the TDF vs Placebo→TDF group over 192 weeks; the clinical relevance of the differences is unknown

Renal Safety at Week 192

	TDF n=60	Placebo→TDF n=29
sCr change, mg/dL	0.12 (0.07, 0.18)	0.15 (0.07, 0.18)
PO ₄ change, mg/dL	-0.1 (-0.5, 0.1)	-0.6 (-0.8, 0.1)
CL _{Cr} change, mL/min/1.73 m ²	-12.1 (-27.2, 2.4)	-5.7 (-30.6, 11.5)
Confirmed renal events, n (%)		
sCr ≥0.5 mg/dL from baseline	0	0
PO ₄ <2.0 mg/dL	0	0
CL _{Cr} <70 mL/min/1.73 m ²	2 (3)	1 (3)
CL _{Cr} <50 mL/min/1.73 m ²	0	1 (3)

Continuous data are expressed as median (Q1, Q3). Confirmed events were defined as 2 consecutive visits.

- Small median declines in CLCr in both groups; few (≤3%) patients had a decline <70 mL/min/1.73 m²
- No renal AEs reported; no study drug interruptions or

transcriptase; sCr, serum creatinine; sPO₄, serum phosphate.

Results

Demographics

TDF Study 0144 (Full Analysis Set)

	TDF, n=60				Placebo→TDF, n=29				
Mean age, y (range)	6 (2–11)				7 (2–12)				
Male, n (%)	33 (55)			17 (59)					
Asian, n (%)	41 (68)			17 (59)					
White, n (%)	15 (25)			11 (38)					
Asia region*, n (%)	33 (55)			16 (55)					
Mean BMI, kg/m² (SD)	16 (2.5)			17 (2.7)					
Prior HBV treatment [†] , n (%)	10 (17)			12 (41) [‡]					
Mean HBV DNA, log ₁₀ lU/mL (SD)	8.1 (0.72)			8.1 (1.25)					
HBV genotype, n (%)	A – 4 (7)	B – 5 (8)	C – 28 (47)	D – 22 (37)	A – 2 (7)	B – 1 (3)	C – 11 (38)	D – 15 (52)	
HBeAg-positive, n (%)	56 (93)			29 (100)					
Median ALT, U/L (Q1, Q3)	85 (58, 167)			97 (55, 146)					
Median CL _{Cr} , mL/min/1.73 m ² (Q1, Q3)	168 (147, 188)			166 (136, 188)					

*South Korea, Taiwan, India; [†]Oral antivirals and/or interferon alfa; [‡]p=0.012. BMI, body mass index; Q, quartile; SD, standard deviation. using ALT normalization by AASLD criteria

discontinuations for renal events

Conclusions

- In mostly HBeAg+ pediatric patients aged 2–<12 years with CHB, long-term TDF treatment for up to 192 weeks demonstrated:
 - High rates of viral suppression, which were maintained over time
 - High rates of ALT normalization by central lab and AASLD criteria
 - Increasing rates of HBeAg loss and seroconversion; HBsAg loss was infrequent
 - No development of TDF resistance
- TDF was safe and well tolerated in pediatric patients aged 2 <12 years
 - No Grade 3 or 4 AEs or SAEs reported were related to TDF treatment
 - Progressive increases in spine and whole-body BMD which were slightly lower for those treated with TDF vs Placebo-TDF
 - No patients experiencing a renal AE or discontinued treatment for a renal abnormality

References: 1. Marcellin P, et al. NEJM 2008;359:2442-55; 2. Marcellin P, et al. Lancet 2013;381:468-75; 3. Marcellin P, et al. AASLD 2014 Oral; 4. Terrault NA, et al. Hepatology 2018;67:1560-99; 5. Jonas MM, et al. Hepatology 2012;56:2018-26. 7. Chang M-H, et al. AASLD 2018, San Francisco, CA. Oral No.76.

Acknowledgments: We extend our thanks to the patients and their families; all participating investigators: BULGARIA Miroslva Bosheva; INDIA Harshad Devarbhavi, Vasant Khalatkar, Rajiv Mehta, Neelam Mohan, Sandeep Nijhawan, Manish Tandon; ROMANIA Alexandrina Georgeta Constantinescu, Gheorghe Iulian Diaconescu, Dumitru Oraseanu, Daniela Pacurar; SOUTH KOREA Byung-Ho Choe, Yon-Ho Choe, Dong Soo Kim, Kyung Mo Kim, Hong Koh, Jae Hong Park; TAIWAN Mei-Hwei Chang, Tzee-Chung Wu; USA Jorge Bezerra, Daniel Leung, Tamir Miloh, Michael Narkewicz, Henry Pollack, Philip Rosenthal. This study was funded by Gilead Sciences, Inc.

Disclosures: Medical Advisory: Gilead, Merck (DSMB); Grant/Research Support to Institution: Gilead, Abbvie, Mirum, CF Foundation, NIDDK